Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275605

RESUMO

CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.


Assuntos
MicroRNAs , RNA Circular , Feminino , Humanos , Células do Cúmulo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/metabolismo
2.
ACS Appl Nano Mater ; 6(20): 19126-19135, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37915835

RESUMO

Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.

3.
Clin Epigenetics ; 15(1): 76, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143127

RESUMO

The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.


Assuntos
Metilação de DNA , Infertilidade Feminina , Gravidez , Feminino , Humanos , Idoso , Taxa de Gravidez , Fertilização In Vitro/efeitos adversos , Infertilidade Feminina/genética , Infertilidade Feminina/terapia , Fertilidade
4.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430152

RESUMO

The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10-5 and 7 × 10-5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = -0.58 and -0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = -0.36, p-value = 0.0066), and miR-515-5p (r-value = -0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/metabolismo , RNA Mensageiro/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proto-Oncogenes , Proteínas de Membrana/metabolismo
5.
Antioxidants (Basel) ; 11(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35624883

RESUMO

Advanced maternal age impairs reproductive performance, influencing the quantity and the quality of oocytes. Mitochondria dysfunction seems to play a decisive role in conditioning the quality of the female gamete. Different in vitro and in vivo studies, demonstrated the antioxidant and anti-inflammatory activities of Resveratrol and its ability to improve mitochondria function even if the exact mechanism of action has not yet been demonstrated in human oocytes. In this paper, by retrospective analysis, we evaluated follicular fluid (FF) miRNome modification in aged women with a poor ovarian reserve receiving a resveratrol-based supplement the three months before the in vitro Fertilization (IVF) cycle. We found 13 differentially expressed microRNAs (miRNAs) in women treated with resveratrol and specifically miR-125b-5p, miR-132-3p, miR-19a-3p, miR-30a-5p and miR-660-5p, regulating mitochondrial proteins, are able to control metabolism and mitochondrial biogenesis. MiRNA expression differences, observed after resveratrol treatment in FF from women with a poor prognosis for IVF, demonstrated that resveratrol may act on mitomiRNAs to improve follicular microenvironment by transcriptomic and proteomic modifications in granulosa cells.

6.
J Assist Reprod Genet ; 39(4): 919-931, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35247118

RESUMO

PURPOSE: Long non-coding RNAs (lncRNAs) control gene expression at multiple levels. By interacting with microRNAs (miRNAs), they regulate their mRNA targets creating dynamic regulatory networks involved in different cellular processes. Their role in follicle development and oocyte maturation has recently emerged. lncRNA deregulation has been found associated with different pathological conditions. In this study, we identified differentially expressed lncRNAs in cumulus cells (CCs) isolated from MII oocytes of advanced maternal age women and proposed ceRNA-networks involved in signaling pathways crucial in ovarian folliculogenesis and female germ cell maturation. METHODS: We performed a high-throughput analysis of the expression profile of 68 lncRNAs from CCs of aged and young women by using NanoString technology. By miRNet, TarPmiR, miRTarBase, OKdb, and KEGG we predicted some ceRNA-networks involving the differentially expressed (DE) lncRNAs, miRNA interactors, and their mRNA target genes. RESULTS: We identified 28 lncRNAs down-regulated in CC samples from aged women. The analysis revealed that the miRNAs binding 11 of the DE lncRNAs and their mRNA targets are included in ceRNA-networks involved in the regulation of the PI3K-Akt, FOXO, and p53 signaling pathways. CONCLUSION: We proposed that the lncRNA down-regulation in CCs from aged women could influence the expression of genes encoding proteins deregulated in reproductive aging. A better understanding of the interplay of lncRNA-miRNA-mRNA networks in human CCs could increase our knowledge about the mechanisms of regulation of gene expression involved in aging, lead to the development of novel therapeutics, and improve reproductive outcomes in aged women.


Assuntos
MicroRNAs , RNA Longo não Codificante , Idoso , Envelhecimento/genética , Células do Cúmulo/metabolismo , Regulação para Baixo/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cell Mol Life Sci ; 79(2): 75, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039944

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 positive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. CircRNA-miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 0.84867, Spearman's correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student's t test, respectively) and their expression positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman's correlation test, respectively). We propose that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation of KCNMB4 and PRKCE mRNAs.


Assuntos
COVID-19/genética , COVID-19/metabolismo , RNA Circular/genética , RNA Viral , SARS-CoV-2/genética , Biologia Computacional , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nasofaringe/virologia , Proteínas do Tecido Nervoso/genética , Mapeamento de Interação de Proteínas , Proteína Quinase C-épsilon/genética , Reprodutibilidade dos Testes
8.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947989

RESUMO

In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.


Assuntos
MicroRNAs/genética , SARS-CoV-2/genética , Replicação Viral/genética , COVID-19/genética , Biologia Computacional/métodos , Vírus de DNA/genética , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , RNA Viral/genética , Homologia de Sequência
9.
Reprod Biomed Online ; 43(6): 1045-1056, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34627683

RESUMO

RESEARCH QUESTION: Treatments for Hodgkin lymphoma have improved but one of their common effects is gonadal toxicity, which contributes to fertility damage of patients and induces temporary or irreversible loss of fertility. Could micro-RNA (miRNA) expression profiles in follicular fluid be influenced by Hodgkin lymphoma? Could their alteration affect molecular pathways involved in follicle growth and oocyte maturation? DESIGN: miRNA expression profile was investigated in follicular fluid samples from young women affected by Hodgkin lymphoma compared with healthy controls by NanoString technology. Bioinformatic analysis was used to verify miRNA involvement in follicle development and miRNA deregulation with Hodgkin lymphoma in a larger cohort of follicular fluid samples was confirmed by real-time quantitative polymerase chain reaction. RESULTS: Thirteen miRNAs are deregulated in Hodgkin lymphoma samples compared with controls and are involved in molecular pathways related to cancer, gametogenesis and embryogenesis. Among them, let-7b-5p, miR-423-5p, miR-503-5p, miR-574-5p and miR-1303 are implicated in biological processes related to follicle development and oocyte maturation. Let-7b-5p holds the central position in the regulatory network of miRNA-mRNA interactions, has the highest number of mRNA target genes shared with the other differentially expressed miRNAs and is significantly downregulated in Hodgkin lymphoma follicular fluid samples. CONCLUSIONS: These data led us to question the potential influence of miRNA deregulation on oocyte quality. Further studies are needed to verify the reproductive potential of young patients with Hodgkin lymphoma before starting chemotherapy protocols and an adequate protocol of fertility preservation needs to be guaranteed.


Assuntos
Líquido Folicular/metabolismo , Doença de Hodgkin/metabolismo , MicroRNAs/metabolismo , Adolescente , Adulto , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Doença de Hodgkin/genética , Humanos , MicroRNAs/genética , Folículo Ovariano/metabolismo , Adulto Jovem
10.
Int J Nanomedicine ; 16: 5153-5165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611399

RESUMO

INTRODUCTION: Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. METHODS: Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. RESULTS: In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. DISCUSSION: This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.


Assuntos
Vesículas Extracelulares , Nanofios , Biomarcadores , Proliferação de Células , Humanos , Silício
11.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198978

RESUMO

Glioblastoma multiforme (GBM) is the most frequent and deadly human brain cancer. Early diagnosis through non-invasive biomarkers may render GBM more easily treatable, improving the prognosis of this currently incurable disease. We suggest the use of serum extracellular vesicle (sEV)-derived circular RNAs (circRNAs) as highly stable minimally invasive diagnostic biomarkers for GBM diagnosis. EVs were isolated by size exclusion chromatography from sera of 23 GBM and 5 grade 3 glioma (GIII) patients, and 10 unaffected controls (UC). The expression of two candidate circRNAs (circSMARCA5 and circHIPK3) was assayed by droplet digital PCR. CircSMARCA5 and circHIPK3 were significantly less abundant in sEVs from GBM patients with respect to UC (fold-change (FC) of -2.15 and -1.92, respectively) and GIII (FC of -1.75 and -1.4, respectively). Receiver operating characteristic curve (ROC) analysis, based on the expression of sEV-derived circSMARCA5 and circHIPK3, allowed us to distinguish GBM from UC (area under the curve (AUC) 0.823 (0.667-0.979) and 0.855 (0.704 to 1.000), with a 95% confidence interval (CI), respectively). Multivariable ROC analysis, performed by combining the expression of sEV-derived circSMARCA5 and circHIPK3 with preoperative neutrophil to lymphocyte (NLR), platelet to lymphocyte (PLR) and lymphocyte to monocyte (LMR) ratios, three known diagnostic and prognostic GBM markers, allowed an improvement in the GBM diagnostic accuracy (AUC 0.901 (0.7912 to 1.000), 95% CI). Our data suggest sEV-derived circSMARCA5 and circHIPK3 as good diagnostic biomarkers for GBM, especially when associated with preoperative NLR, PLR and LMR.

12.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562358

RESUMO

Circular RNAs (circRNAs) are a large class of RNAs with regulatory functions within cells. We recently showed that circSMARCA5 is a tumor suppressor in glioblastoma multiforme (GBM) and acts as a decoy for Serine and Arginine Rich Splicing Factor 1 (SRSF1) through six predicted binding sites (BSs). Here we characterized RNA motifs functionally involved in the interaction between circSMARCA5 and SRSF1. Three different circSMARCA5 molecules (Mut1, Mut2, Mut3), each mutated in two predicted SRSF1 BSs at once, were obtained through PCR-based replacement of wild-type (WT) BS sequences and cloned in three independent pcDNA3 vectors. Mut1 significantly decreased its capability to interact with SRSF1 as compared to WT, based on the RNA immunoprecipitation assay. In silico analysis through the "Find Individual Motif Occurrences" (FIMO) algorithm showed GAUGAA as an experimentally validated SRSF1 binding motif significantly overrepresented within both predicted SRSF1 BSs mutated in Mut1 (q-value = 0.0011). U87MG and CAS-1, transfected with Mut1, significantly increased their migration with respect to controls transfected with WT, as revealed by the cell exclusion zone assay. Immortalized human brain microvascular endothelial cells (IM-HBMEC) exposed to conditioned medium (CM) harvested from U87MG and CAS-1 transfected with Mut1 significantly sprouted more than those treated with CM harvested from U87MG and CAS-1 transfected with WT, as shown by the tube formation assay. qRT-PCR showed that the intracellular pro- to anti-angiogenic Vascular Endothelial Growth Factor A (VEGFA) mRNA isoform ratio and the amount of total VEGFA mRNA secreted in CM significantly increased in Mut1-transfected CAS-1 as compared to controls transfected with WT. Our data suggest that GAUGAA is the RNA motif responsible for the interaction between circSMARCA5 and SRSF1 as well as for the circSMARCA5-mediated control of GBM cell migration and angiogenic potential.


Assuntos
Adenosina Trifosfatases/genética , Movimento Celular , Proteínas Cromossômicas não Histona/genética , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neovascularização Patológica/patologia , RNA Circular/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Motivos de Nucleotídeos , Prognóstico , RNA Circular/genética , Fatores de Processamento de Serina-Arginina/genética , Células Tumorais Cultivadas
13.
Aging (Albany NY) ; 12(12): 12324-12341, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554857

RESUMO

Ovarian aging affects female reproductive potential and is characterized by alterations in proteins, mRNAs and non-coding RNAs inside the ovarian follicle. Ovarian somatic cells and the oocyte communicate with each other secreting different molecules into the follicular fluid, by extracellular vesicles. The cargo of follicular fluid vesicles may influence female reproductive ability; accordingly, analysis of extracellular vesicle content could provide information about the quality of the female germ cell.In order to identify the most significant deregulated microRNAs in reproductive aging, we quantified the small extracellular vesicles in human follicular fluid from older and younger women and analyzed the expression of microRNAs enclosed inside the vesicles. We found twice as many small extracellular vesicles in the follicular fluid from older women and several differentially expressed microRNAs. Correlating microRNA expression profiles with vesicle number, we selected 46 deregulated microRNAs associated with aging. Bioinformatic analyses allowed us to identify six miRNAs involved in TP53 signaling pathways. Specifically, miR-16-5p, miR214-3p and miR-449a were downregulated and miR-125b, miR-155-5p and miR-372 were upregulated, influencing vesicle release, oocyte maturation and stress response. We believe that this approach allowed us to identify a battery of microRNAs strictly related to female reproductive aging.


Assuntos
Envelhecimento/genética , Vesículas Extracelulares/metabolismo , Líquido Folicular/citologia , MicroRNAs/metabolismo , Reprodução/genética , Adulto , Biologia Computacional , Vesículas Extracelulares/ultraestrutura , Feminino , Líquido Folicular/metabolismo , Perfilação da Expressão Gênica , Humanos , Infertilidade Masculina/terapia , Masculino , Microscopia Eletrônica de Varredura , Folículo Ovariano/metabolismo , Injeções de Esperma Intracitoplásmicas , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Regulação para Cima
14.
Front Oncol ; 10: 614455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552987

RESUMO

Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFß-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a "miRNA sponge" role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.

15.
RNA Biol ; 16(9): 1237-1248, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31135264

RESUMO

Circular RNAs (circRNAs) have a critical role in the control of gene expression. Their function in spermatozoa (SPZ) is unknown to date. Twenty-eight genes, involved in SPZ/testicular and epididymal physiology, were given in circBase database to find which of them may generate circular transcripts. We focused on circNAPEPLDiso1, one of the circular RNA isoforms of NAPEPLD transcript, because expressed in human and murine SPZ. In order to functionally characterize circNAPEPLDiso1 as potential microRNA (miRNA) sponge, we performed circNAPEPLDiso1-miR-CATCH and then profiled the expression of 754 miRNAs, by using TaqMan® Low Density Arrays. Among them, miRNAs 146a-5p, 203a-3p, 302c-3p, 766-3p and 1260a (some of them previously shown to be expressed in the oocyte), resulted enriched in circNAPEPLDiso1-miR-CATCHed cell lysate: the network of interactions generated from their validated targets was centred on a core of genes involved in the control of cell cycle. Moreover, computational analysis of circNAPEPLDiso1 sequence also showed its potential translation in a short form of NAPEPLD protein. Interestingly, the expression analysis in murine-unfertilized oocytes revealed low and high levels of circNAPEPLDiso1 and circNAPEPLDiso2, respectively. After fertilization, circNAPEPLDiso1 expression significantly increased, instead circNAPEPLDiso2 expression appeared constant. Based on these data, we suggest that SPZ-derived circNAPEPLDiso1 physically interacts with miRNAs primarily involved in the control of cell cycle; we hypothesize that it may represent a paternal cytoplasmic contribution to the zygote and function as a miRNA decoy inside the fertilized oocytes to regulate the first stages of embryo development. This role is proposed here for the first time.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Oócitos/metabolismo , RNA Circular/genética , Espermatozoides/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Fator de Iniciação 4A em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , MicroRNAs/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Zigoto/metabolismo
16.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052401

RESUMO

Reproduction, the ability to generate offspring, represents one of the most important biological processes, being essential for the conservation of the species. In mammals, it involves different cell types, tissues and organs, which, by several signaling molecules, coordinate the different events such as gametogenesis, fertilization and embryo development. In the last few years, the role of Extracellular Vesicles, as mediators of cell communication, has been investigated in every phase of these complex processes. Microvesicles and exosomes, identified in the fluid of ovarian follicles during egg maturation, are involved in communication between the developing oocyte and the somatic follicular cells. More recently, it has been demonstrated that, during implantation, Extracellular Vesicles could participate in the complex dialog between the embryo and maternal tissues. In this review, we will focus our attention on extracellular vesicles and their cargo in human female reproduction, mainly underlining the involvement of microRNAs in intercellular communication during the several phases of the reproductive process.


Assuntos
Implantação do Embrião , Vesículas Extracelulares/metabolismo , Oogênese , Blastocisto/metabolismo , Blastocisto/fisiologia , Endométrio/metabolismo , Endométrio/fisiologia , Vesículas Extracelulares/genética , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
17.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037059

RESUMO

The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.


Assuntos
Endométrio/metabolismo , Endométrio/fisiopatologia , RNA Longo não Codificante/genética , Animais , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/fisiopatologia , Endometriose/metabolismo , Endometriose/fisiopatologia , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia
18.
Am J Reprod Immunol ; 80(3): e12858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663566

RESUMO

PROBLEM: Chronic endometritis (CE) is usually asymptomatic and different studies demonstrated the relation with infertility and recurrent pregnancy loss. Altered regulation of protein-encoding genes in CE has been demonstrated, but no evidence about the involvement of microRNAs in the pathology is present in literature. METHOD OF STUDY: In the endometrium from 15 women with CE and 15 healthy women, by RT-qPCR single assays, we investigated some microRNAs targeting IL11, CCL4, IGF1, and IGFBP1, which mRNAs had been found differentially expressed in endometrium of women affected by CE. The expression of IGF1 and IL11, targets of the deregulated microRNAs, has been analyzed in the same endometrium samples. We assessed the expression profiles of the deregulated microRNAs in the serum of the same patients validating their ability as biomarkers by statistical analysis. RESULTS: We demonstrated the upregulation of miR-27a-3p and miR-124-3p in the endometrium and serum from women with CE and found an anticorrelation relationship between miR-27a-3p and IGF1 in endometrium. ROC curve analysis suggested that miRNA investigation in endometrium and serum could discriminate women with CE. CONCLUSION: MiR-27a-3p and miR-124-3p could represent non-invasive markers of CE and, in a near future, could be used to assess the endometrial quality in IVF.


Assuntos
Aborto Espontâneo/genética , Endometrite/genética , Endométrio/fisiologia , Marcadores Genéticos/genética , Infertilidade/genética , MicroRNAs/genética , Adulto , Doença Crônica , Feminino , Humanos , Fator de Crescimento Insulin-Like I/genética , Patologia Molecular , Gravidez , Regulação para Cima
19.
Int J Genomics ; 2017: 4723193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147648

RESUMO

Over the past few years, noncoding RNAs (ncRNAs) have been extensively studied because of the significant biological roles that they play in regulation of cellular mechanisms. ncRNAs are associated to higher eukaryotes complexity; accordingly, their dysfunction results in pathological phenotypes, including cancer. To date, most research efforts have been mainly focused on how ncRNAs could modulate the expression of protein-coding genes in pathological phenotypes. However, recent evidence has shown the existence of an unexpected interplay among ncRNAs that strongly influences cancer development and progression. ncRNAs can interact with and regulate each other through various molecular mechanisms generating a complex network including different species of RNAs (e.g., mRNAs, miRNAs, lncRNAs, and circRNAs). Such a hidden network of RNA-RNA competitive interactions pervades and modulates the physiological functioning of canonical protein-coding pathways involved in proliferation, differentiation, and metastasis in cancer. Moreover, the pivotal role of ncRNAs as keystones of network structural integrity makes them very attractive and promising targets for innovative RNA-based therapeutics. In this review we will discuss: (1) the current knowledge on complex crosstalk among ncRNAs, with a special focus on cancer; and (2) the main issues and criticisms concerning ncRNAs targeting in therapeutics.

20.
Front Mol Biosci ; 4: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046875

RESUMO

Over the past few years, exosomes and their RNA cargo have been extensively studied because of the fascinating biological roles they play in cell-to-cell communication, including the signal exchange among cancer, stromal, and immune cells, leading to modifications of tumor microenvironment. RNAs, especially miRNAs, stored within exosomes, seem to be among the main determinants of such signaling: their sorting into exosomes appears to be cell-specific and related to cellular physiopathology. Accordingly, the identification of exosomal miRNAs in body fluids from pathological patients has become one of the most promising activity in the field of biomarker discovery. Several analyses on the qualitative and quantitative distribution of RNAs between cells and their secreted exosomes have given rise to questions on whether and how accurately exosomal RNAs would represent the transcriptomic snapshot of the physiological and pathological status of secreting cells. Although the exact molecular mechanisms of sorting remain quite elusive, many papers have reported an evident asymmetric quantitative distribution of RNAs between source cells and their exosomes. This phenomenon could depend both on passive and active sorting mechanisms related to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c) removal of RNAs not critical or even detrimental for normal or diseased cells. These observations represent very critical issues in the exploitation of exosomal miRNAs as cancer biomarkers. In this review, we will discuss how much the exosomal and corresponding donor cell transcriptomes match each other, to better understand the actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a diseased status of the cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...